С23 |
Сборник индивидуальных заданий по высшей математике [Текст] : учеб. пособ.: в 2 ч. Ч. 2 / А. П. Рябушко, В. В. Бархатов, В. В. Державец, И. Е. Юруть ; Рябушко А. П., ред. – Минск : Вышэйшая шк., 1991. – 352 с.
Книга является составной частью комплекса учебных пособий по курсу высшей математики, направленных на развитие и активизацию самостоятельной работы студентов вузов. Содержатся теоретические сведения и наборы задач для аудиторных и индивидуальных заданий по следующим разделам: комплексные числа, неопределенные и определенные интегралы, функции нескольких переменных и обыкновенные дифференциальные уравнения.
Для студентов инженерно-технических специальных вузов.
Предисловие З
Методические рекомендации 5
7. Комплексные числа и действия над ними
7.1. Основные понятия. Операции над комплексными числами 9
7.2. Дополнительные задачи к гл. 7 13
8. Неопределенный интеграл
8.1. Первообразная функции и неопределенный интеграл ... 14
8.2. Непосредственное интегрирование функций 17
8.3. Интегрирование функций, содержащих квадратный трехчлен 20
8.4. Интегрирование заменой переменной (подстановкой) ... 24
8.5. Интегрирование по частям 28
8.6. Интегрирование рациональных функций 30
8.7. Интегрирование некоторых иррациональных функций . . 36
8.8. Интегрирование тригонометрических выражений .... 40
8.9. Индивидуальные домашние задания к гл. 8 43
8.10. Дополнительные задачи к гл. 8 136
9. Определенный интеграл
9.1. Понятие определенного интеграла. Вычисление определенных интегралов 137
9.2. Несобственные интегралы 143
9.3. Приложение определенных интегралов к задачам геометрии 149
9.4. Приложение определенных интегралов к решению физических задач 159
9.5. Индивидуальные домашние задания к гл. 9 164
9.6. Дополнительные задачи к гл. 9 206
10. Дифференциальное исчисление функций нескольких переменных
10.1. Понятие функции нескольких переменных. Частные производные 208
10.2. Полный дифференциал. Дифференцирование сложных и неявных функций 212
10.3. Частные производные высш'их порядков. Касательная плоскость и нормаль к поверхности 216
10.4. Экстремум функции двух переменных 219
10.5. Индивидуальные домашние задания к гл. 10 . . . . 222
10.6. Дополнительные задачи к гл. 10 . 240
11. Обыкновенные дифференциальные уравнения
11.1. Основные понятия. Дифференциальные уравнения первого
порядка. Метод изоклин ... 243
11.2. Дифференциальные уравнения с разделяющимися переїв менными. Однородные уравнения 247
11.3. Линейные дифференциальные уравнения первого порядка.
Уравнение Бернулли 252
11.4. Уравнения в полных дифференциалах 256
11.5. Дифференциальные уравнения высших порядков, допу-
екающие понижение порядка 259
11.6. Линейные дифференциальные уравнения второго и высших
порядков 264
11.7. Системы дифференциальных уравнений 278
11.8. Индивидуальные домашние задания к гл. 11 290
11.9. Дополнительные задачи к гл. 11 338
Приложения 340
Рекомендуемая литература 349
|